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The circle map provides a generic model for the response of damped, nonlinear 
oscillators to periodic perturbations. As the parameters are varied this 
dynamical system exhibits transitions from regular, ordered behavior to chaos. 
In this paper the regular and irregular behavior of the circle map are examined 
for a broad range of nonlinearities and frequencies which span not only the 
regular and transition regimes, which have been studied extensively, but also the 
strongly nonlinear, chaotic regime. We discuss the bistable behavior (split bifur- 
cations) associated with maps with multiple extrema that gives rise to two dis- 
joint attractors which can be periodic or chaotic and to the low order periodic 
orbits emerging from chaos via tangent bifurcations. To describe the chaotic 
behavior we use a statistical description based on a path integral formulation of 
classical dynamics. This path integral method provides a convenient means of 
calculating statistical properties of the nonlinear dynamics, such as the invariant 
measure of the average Lyapunov exponent, which in many cases reduce to 
analytic expressions or to numerical calculations which can be completed in a 
fraction of the time required to explicitly iterate the map. 

KEY WORDS:  Nonlinear dynamics; circle map; period doubling bifur- 
cations; chaos; invariant measures; average Lyapunov exponents; path integrals. 

I. I N T R O D U C T I O N  

Nature exhibits a wide variety of processes with seemingly random 
behavior. Examples in the biological and physical sciences include such 
phenomena as population fluctuations among competing species, ~1) 
chemical oscillators, and high Reynold's number fluid flows/2) Recent 
attempts to understand and describe these and related dynamical systems 
have led to the discovery of a special class of deterministic mathematical 
models. These models, although simple in form, display surprisingly com- 
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plicated dynamics: as a parameter is varied the observed behavior ranges 
from orderly and predictable to chaotic. The most extensively studied 
models are one-dimensional, nonlinear difference equations of the form 

xt+l=F(x,a) t =0 ,  1, 2, 3,... (1) 

where x, is the position of the system at some discrete time t, and a 
provides a measure of nonlinearity./3) Maps of this type arise as direct 
models of discrete dynamical systems or as discretizations of differential 
ones. For  strong nonlinearities, i.e., large values of a, these nonlinear maps 
can exhibit the irregular behavior and the strong dependence on initial 
conditions characteristic of chaos. ~3) 

One important example is the circle map 

xt+ 1 = x, + a sin(2~xt) + f2 (2) 

which exhibits ordered behavior for small a and undergoes transitions to 
chaos as a and O are varied. This map provides a generic model for the 
response of nonlinear oscillators to periodic perturbations (4~ with 
applications to problems of cardiac arrhythmia, (5) particle motion in 
accelerators and magnetic traps, (4) the onset of turbulence in two frequency 
flows,(6 87 and the dynamics of Josephson junctions and charge density 
waves in condensed matter physics. ~ The first transition from periodic to 
chaotic behavior at a = I/2g corresponds to the breakup of Kolmogorof-  
Arnold-Moser surfaces in higher dimensions (7'8) and has been studied 
extensively. Little has been written, however, about the behavior of the 
map for a > 1/2m The purpose of this paper is to discuss the regular and 
irregular behavior of the circle map for a > 1/2~z and to develop a path 
integral method for calculating statistical properties of the dynamics in the 
chaotic regime. 

In Section II, we review the behavior of the circle map as a and f2 are 
varied. (The return map with Q = 0 is plotted in Fig. 1 for several different 
values of a.) When O = 0, the map undergoes a transition to chaos via a 
sequence of period-doubling bifurcations accumulating to an aperiodic 
cycle at a = a ~ .  u~ In addition to the usual Feigenbaum bifurcation 
sequence, this map exhibits the "split bifurcations" characteristic of maps 
with multiple extrema. (11 

The behavior of Eq. (2) is even richer for ~ r 0. (The return map for 
nonzero g? corresponds to a vertical translation of Fig. 1 by O.) When 
a ~< 1/2~, the iterates of the map mode-lock to stable periodic attractors. 
For  values of a >  1/2g, the return map is no longer monotonic and 
repeated iteration of the map results in stable periodic orbits, chaotic 
attractors, or a bistable pair of attractors (where one of the two distinct 
attractors develops depending on initial conditions). (9) 
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The return map for Eq. (2) with 12 = 0 is plotted for a = 0.05, l/2n, 1/n. The return 
map for O ~ 0 corresponds to vertical translation by O. 

For  most  values of a > a ~ ,  when f2 = 0, and for a > 1/2n, when s ~ 0, 
the map exhibits the extreme sensitivity to initial conditions characteristic 
of chaotic behavior. Within this chaotic regime, however, the bifurcation 
diagram for the circle map also includes numerous periodic windows. For  
example, we note that when s = 0 a single period-2 cycle appears near half- 
integer values of a, while one of two stable fixed points emerges depending 
on the initial condition for integer values. In both cases, a sequence of 
period-doubling bifurcations and return to chaos are observed on all 
periodic attractors as a is increased. The bistable behavior also persists in 
the chaotic regime where competit ion occurs not only between two 
periodic orbits or two chaotic attractors but also between periodic and 
chaotic attractors when s ~ 0. 

When the motion is chaotic, the complexity of the dynamics suggests 
that a statistical description is appropriate.  In Section III,  we exploit a 
path-integral formalism to calculate important  statistical quantities such as 
the long-time probabili ty distribution and the average Lyapunov exponent 
which characterizes the stochastic instability. 

The path integral method for classical dynamics was first applied in 
renormalized perturbation theories to calculate the statistical correlation 
and response functions describing fluid and plasma turbulence. (12-t5) The 
most notable success, however, has been in the explicit calculation of 
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statistical properties of dynamical systems modeled by nonlinear difference 
equationsJ ~6-24) In particular, the path integral method can be used to 
accurately determine the asymptotic probability distribution for the circle 
map. Periodic orbits are represented by prominent and correctly positioned 
extrema in the plots of probability distribution versus x while the invariant 
measures for chaotic orbits are smooth distributions with peaks located at 
the images of the critical points of the map. (2s) In the event of two possible 
attractors, the analytic result includes both, corresponding to the 
probability measure left invariant by the dynamics without regard to the 
specific initial conditions. Finally, the probability distribution is used to 
evaluate the average Lyapunov exponent. (26) Analytically and numerically 
determined values for the invariant measure and the average Lyapunov 
exponent are in excellent agreement. 

II. R E G U L A R  A N D  C H A O T I C  B E H A V I O R  

A. W e a k  N o n l i n e a r i t y  

When s the circle map undergoes a transition from stable 
periodic attractors to chaotic attractors as a is increased. This transition 
takes the form of a sequence of period doubling and "split" bifurcations. 
Figures 2a and 2b show bifurcation diagrams for Q = 0 and 0 ~< a ~< 1.51 for 
two different initial conditions lying in different basins of attraction. For  
small a, the successive iterates of the map are attracted to a stable fixed 
point at x = 0.5 that bifurcates into a period-2 cycle at a = 1/m When a is 
increased beyond 0.5, four stable period-2 points appear, and the long-time 
dynamics lie on one of two distinct period-2 cycles depending on the initial 
condition Xo. This bistable behavior is registered on the bifurcation 
diagram as a split bifurcation. Similar split bifurcations have also been 
observed for the cubic map. (11) In general, maps with n extrema can have 
up to n different attractors with disjoint basins of attraction. (11) 

The subsequent period-doubling bifurcations on each branch of the 
split bifurcation can be described using the standard techniques developed 
by Feigenbaum and others for one-dimensional difference equations with a 
single, locally quadratic extremum. (3'1~ Each branch undergoes a sequence 
of period-doubling bifurcations beginning with a pitchfork bifurcation to a 
stable 4-cycle at a 4 = (0.25 + 1/2rc2)1/2~ 0.5483, (5) followed by a bifurcation 
to a stable 8-cycle at a8 ~0.5590, and leading to an eventual aperiodic cycle 
at the accumulation point ao~. Using the Feigenbaum number, 6~4.669, 
and the difference a 8 -  a4 = 0.0107, a~o can be estimated by 

a ~ 0 . 5 4 8 3 + 0 . 0 1 0 7  ~ =0.562 (3) 
; ' z=O 
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Fig. 2. The long time iterates of the circle map are plotted for 12 = 0 and for values of a 
between 0.0 and 1.51 to generate the bifurcation diagrams for two different initial conditions, 
(a) x0 = 0.25 and (b) x0 =0.75, showing the bistable behavior associated with the multiple 
extrema of the circle map. The map was evaluated modulo one to extend the bifurcation 
diagram beyond a = aa ~ 0.7326. 
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for rational values of f2. For nonzero a, however, "mode-locking" to stable 
periodic attractors occurs for bands of g? which increase in size with 
increasing a. These mode-locking bands are called Arnold "tongues" and 
cover roughly triangular regions in a plot of a versus ~. (See Fig. 2 of 
Ref. 5). Between the Arnold tongues the motion is quasi-periodic. When 
a = 1/2re, the successive iterates converge to a periodic cycle for almost 
every s and the Arnold tongues consume the entire range of f2. Further- 
more, because every rational period occurs for some value of f2, a graph of 
the winding number 

W= lim XN--Xo (4) 
N~oo N 

plotted as a function of f2 forms a complete "devil's staircase. "(9) 
For a>l /2rc ,  the dynamics become quite complicated. Period- 

doubling bifurcations, bistability, and chaos have been observed 
numerically as well as experimentally in situations modeled by the circle 
map. ~ The transition from regular to irregular behavior at a =  1/2re 
corresponds to the point at which the return map, Eq. 2, ceases to be a 
monotonic function of x,. When a ~< 1/2~, the circle map can always be 
transformed to a regular rotation, but when a ~> 1/2~, the coordinate trans- 
formation breaks down. This failure corresponds to the breakup of 
Kolmogorof-Arnold Moser surfaces in two-dimensional maps and has 
been shown, through a renormalization group analysis, to display universal 
properties.(~'8) 

B. Strong Nonlinearity 

Some of the effects of large nonlinearity are revealed in an examination 
of the circle map for Q =0.  For most values of a > a ~ ,  the dynamics 
exhibit the extreme sensitivity to initial conditions characteristic of chaotic 
dynamical systems. Neighboring trajectories no longer converge to periodic 
cycles but split apart at an exponential rate. For one-dimensional difference 
equations like Eq. (1), the average Lyapunov exponent, defined as 

1 u I 

provides a measure of the local instability. (27) As can be seen in Fig. 3, 2 
first becomes positive for a > ao~. The negative spikes correspond to the 
reemergence of periodic attractors. Pesin has proven that positive 
Lyapunov exponent is equivalent to positive Kolmogorof entropy. (28) Thus, 
chaotic dynamical systems with ,~ > 0 are by definition "mixing" systems or, 
more precisely, K systems. (29> 
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For a < aa= 0.7326 .... the successive iterates of the circle map are con- 
fined to a subset of the unit interval. The motion first spans the entire inter- 
val [0, 1 ] at a = ad. For  values of a between a~ and ad, the dynamics of 
the circle map are similar to that of the celebrated logistic map. (1~ The 
chaotic regime is filled with small intervals of a where the motion converges 
to periodic cycles. The larger of these intervals can be clearly seen as gaps 
in the bifurcation diagrams, Fig. 2a and 2b, and as negative spikes in the 
graph of the average Lyapunov exponent as a function of a, Fig. 3. These 
periodic cycles emerge as tangent bifurcations and dissolve into chaos 
through a sequence of period-doubling bifurcations. Because of the two 
extrema, the order of appearance of the cycles of different periods is not the 
same as for the logistic map, (11~ and the subsequent period doubling of the 
circle map includes split bifurcations and the associated bistability. (11) 

Although the intervals of regular behavior appear to densely cover the 
entire range of a, Jakobson has proven for the logistic map that the values 
of a giving rise to chaotic behavior form a set of nonzero measure. (3'3~ A 
similar conclusion may be expected for the circle map. Consequently, when 
the motion appears to be chaotic it is possible (perhaps likely) that it is 
actually chaotic and not just a periodic cycle with an extremely long 
period. Once again, the main difference between the chaotic behavior of the 
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Fig, 3. The average Lyapunov exponent for the circle map, computed from Eq. (5), is plot- 
ted as a function of a between 0.0 and 1.51. 
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circle map and unimodal maps is the persistence of bistability. At many 
values of a following the appearance of a periodic orbit, the map exhibits 
pairs of chaotic attractors as well as pairs of periodic orbits with disjoint 
basins of attraction. (See, for example, Figs. 2a and 2b.) These basins 
coalesce, however, at the crisis points ~31) where the chaotic bands of the 
two attractors intersect at an unstable periodic orbit. ~ 

When a > aa, the dynamics of the circle map become unbounded. The 
chaotic orbits exhibit a diffusive behavior characterized statistically by a 
mean square displacement ( ( x , -  x0) 2) which grows steadily with time. (32) 
However, since we are mostly concerned with equilibrium statistical 
properties of the circle map, it is convenient to take advantage of the 
natural periodicity of the map and treat x~ as an angle variable restricted to 
the interval [0, 1 ]. This is easily accomplished by defining the circle map, 
Eq. (2), modulo 1. With this definition, orbits that would escape from the 
unit interval are folded back in as seen in Figs. 2a and 2b for a > ad. 

When a is greater than or equal to 1.0, periodic attractors emerge from 
chaos at integer and half-integer values of a. When a is an integer, the circle 
map (defined modulo 1 with O = 0) exhibits a tangent bifurcation to a pair 
of period-1 fixed points at x = 0.25 and x = 0.75. Only one of these attrac- 
tors appears for any single initial condition (see Figs. 2a and 2b), and both 
undergo simultaneous sequences of pitchfork bifurcations to chaos. The 
long-time orbits for values of a near 1 are shown in Fig. 4. 

The emergence of order from chaos near half-integer values of the 
nonlinear parameter differs in structure from the former case. A single 
stable 2-cycle emerges through a tangent bifurcation when a is slightly less 
than a half-integer. At the half-integer value of a, a split bifurcation occurs, 
resulting in a pair of new and independent period-2 cycles. Then, as obser- 
ved for a larger than 0.5, a sequence of period doubling bifurcations leads 
to chaos on each of the separate attractors. The bifurcation diagram for 
values of a near 1.5 is displayed in Fig. 5. 

We note that periodic orbits are not the only regular structures visible 
in the bifurcation diagrams within the chaotic regime. Dark streaks 
corresponding to regions of high probability also appear (see Figs. 2a 
and 2b). The locations of these smooth structures are determined by the 
images of the extrema of the map. (25) Because the invariant measure, Pl(x), 
associated with the chaotic dynamics is formally determined by the 
relation (26) 

Pl(xi) 
P~(x) = ~ ](dF/dxi)(xi)[ (6) 

where the xi denote the pre-images of the point x, the probability dis- 
tribution diverges at the images of the extremal points of the map. If the 
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Fig. 4. The bifurcation diagram for ,c2 = 0 and Xo = 0.75 is magnified for values of a near 1. A 
period-1 attractor emerges at a = 1.0 and undergoes its first period-doubling bifurcation at 
a = 1.05. It becomes an aperiodic attractor at the accumulation point at a~ ~ 1.08. The other 
period-1 fixed point appears at a= 1.0 for values of x 0 in its basin of attraction, such as 
x 0 = 0.25, and bifurcates to chaos in an identical fashion. 

invar ian t  measure is nonzero  at these critical points,  the dis t r ibut ion 

exhibits an integrable singulari ty of the form 1 / J x - F ' ( x * ) [  1/2 at each of 

the n images of the critical points  x*. In  Section III,  we present  a path- 

integral method  which provides an al ternate  method for explicitly 
calculat ing the full invar ian t  measure. 

Final ly,  a l though the large a behavior  of the circle map for nonzero  f2 

is quali tat ively similar, the order ing of periodic cycles and  chaotic at trac-  
tors for large a varies with ~2. For  example, when a is large, split bifur- 

cat ions can give rise to a pair  of disjoint  at t ractors  with different periods, 
and  compet i t ion  can occur between a periodic cycle and  a chaotic one. 
Examples of split bifurcat ions leading to regular or chaotic at t ractors  
depending  on the initial  condi t ion  are i l lustrated in Figs. 6a and  6b. 
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Fig. 5. The bifurcation diagram for Q = 0 and is magnified for values of a near 1.5. When 
a-~ 1.465, a single period-2 cycle appears. At a = 1.5, a split bifurcation takes place and gives 
rise to a pair of degenerate period two cycles that alternate between x = 0.25 and x=0.75. 
Then both pairs of attractors cascade back to chaos via simultaneous sequences of period 
doubling bifurcations. 

I I I .  C A L C U L A T I O N  O F  S T A T I S T I C A L  P R O P E R T I E S  
O F  T H E  C I R C L E  M A P  

In  general ,  the long- t ime behav io r  of  non l inea r  dynamica l  systems, l ike 
that  of the circle map ,  canno t  be de te rmined  analyt ical ly .  The equa t ions  of 
m o t i o n  are nonin tegrab le ,  and  the conven t iona l  ana ly t ic  me thods  based  on 
p e r t u r b a t i o n  theories  fail for large nonl inear i t ies .  Fo r tuna t e ly ,  ana ly t ic  
means  can often be devised to account  for obse rva t ions  of such regular  
behav ior  as per iod ic  cycles or  p r o m i n e n t  peaks  in the invar ian t  measure.  
Several  successful analyses  of  the regular  behav io r  of  the circle m a p  were 
discussed in the previous  section. (5 9,25) However ,  when the m o t i o n  is 

chaot ic  a descr ip t ion  in terms of  the ind iv idua l  orbi ts  is no t  only  
analy t ica l ly  in t rac tab le  but  also unserviceable  due to the ext reme sensi t ivi ty 
of the dynamics  to the ini t ial  condi t ions .  In  this case, a s ta t is t ical  descr ip-  
t ion in terms of an ensemble  of  ini t ial  condi t ions  is more  a p p r o p r i a t e  and  
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Fig. 6. The bifurcation diagrams displaying the competing attractors are shown for f2 = 0.45 
and values of a between 0.55 and 0.75. The long-time, regular, and chaotic behavior for 
x0=0.75 is shown in (a), while the bifurcation diagram for xo=0.25 is shown in (b). This 
figure shows that for Q-~ 0 the bistable behavior can occur between two periodic attractors, 
two chaotic attractors, or one periodic and one chaotic attractor. Near a =0.65 a "crisis" 
occurs and the two attractors coalesce into one. 

may admit an analytic treatment of the chaotic dynamics if the appropriate 
probability distributions can be determined. 

To this end, a path integral method (16-24) has been developed to 
provide an efficient, semianalytic means of calculating observable statistical 
properties of chaotic systems. Using the path integral representation of 
classical dynamical systems, (ls~ functionals of the dynamics, such as 
correlation functions and conditional probability distributions, are deter- 
mined by the evaluation of integrals rather than the solution of differential 

822/43/1-2-25 
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or difference equations. These path integrals provide a useful description of 
systems exhibiting chaotic behavior due to external noise or intrinsic 
stochasticity. Moreover, the functional integrals arising in statistical 
dynamics are very similar to those in quantum theory and statistical 
mechanics. Consequently, analytic techniques developed in the latter areas 
can be extended to problems in chaotic dynamics. 

One immediate application of the path integral method is to the 
calculation of the stationary probability distribution for chaotic dynamical 
systems.(22 24) This distribution Pz(x) is defined as the measure left 
invariant by the dynamics. For discrete dynamical systems, the semigroup 
property of the conditional probability leads to an integral representation 
for the invariant measure 

Pt(x,+ 1) = f dx, P(xt+~ [xt) Pt(xt) (7) 

where P(xt+l] xt) is the conditional probability for a transition from x, to 
xt+~. For the deterministic process defined by Eq. 1, P(xt+llxt) is given 
simple by a Dirac delta function 6(x,+1-F(x,)).  

If the dynamics are chaotic, then Eq. 7 determines a smooth 
probability measure which is absolutely continuous with respect to 
Lebesgue measure. However, if the long-time dynamics lie on a stable 
periodic orbit, then the solution of Eq. (7) will consist of a sequence of 
Dirac 6 functions centered on the elements of the periodic cycle, and 
approximate solutions of Eq. 7 will give approximate representations of 
these 8 functions. Moreover, if there are several invariant measures 
corresponding to different attractors, as is often the case for the circle map, 
then the solution for PI will be a linear superposition of all of these 
measures. 

When xt is bounded on a finite interval, as for the circle map, the delta 
function can be expanded as a Fourier series, thereby transforming Eq. (7) 
into a form reminiscent of the path integrals appearing in quantum 
theories, 

Pt( x, + 1) = dx t P l(Xt) e i 2 r c m ( x t + l - -  F ( x t ) )  (8) 
m =  - - o r  

Replacing P1 on both sides of Eq. (8) by its Fourier transform 

A(n) = f] dx e-iZ~x"Pz(x ) (9) 

we get in a relation for the Fourier components of the stationary 
probability distribution 

A(n)= ~" M(n, m) A(m) (10) 
m =  - -  cy.3 
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where 

M(n, m) = d x  e i2~( . . . .  F(x)) (1 1 ) 

Equation (10) is an infinite-dimensional matrix equation 

A = MA (12) 

where A n = A(n) is the eigenvector with unit eigenvalue ~23) of the matrix 
M n m  = M(n, m). If the matrix elements decay rapidly enough for large 
mode numbers, as is often the case for chaotic dynamical systems, the 
matrix system may be truncated and" solved analytically or numerically for 
the values of the Fourier coefficients. The invariant probability distribution 
can then be constructed by inverting the Fourier transform 

P I ( X )  = ~ ei2~"XA(n) (13) 
n ~ - - o ( 3  

As an illustration, consider the tent map 

~'2x~ if 0~<xt~<0.5 
x'+l = ~2(1-x , )  if 0.5 ~<x,~< 1.0 (14) 

which was first proven to have a uniform stationary distribution on the 
interval [0, 1] by Kac. (33) For this example, Eq. (11) gives 

f:' M(n,m)= dxei2~x(m 2n)+ dxei2~x(m+2n) (15) 
.5 

Then using Eq. (10) and the condition A*(n)= A(-n), which guarantees a 
real value of Pz(x), we get 

ReA(n)=  ~ [Sk(m--2n)+6k(m+2n)]A(m) (16) 
m =  - - o o  

Since the Kronecker 6k functions are real, all terms A(n) must also be 
real. Therefore, Eq. (16) requires that 

2A(n) = A(2n)+ A ( -  2n) = 2A(Zn) (17) 

This relation is satisfied by A(O)=~Pi(x)dx=_l; and for all nO0, 
Eq. (17) dictates that A(n)= c, where c is an undetermined constant. Then 
from Eq. (13) we find 

P , (x )=  ~ A(n)ei2~nx=(1-c)+c ~ e i2~nx 

= ( 1 - c ) + c  ~ 6(x-n) (18) 
n - -  - - c o  
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Consequently, the only nonsingular probability distribution is the uniform 
distribution P(x)= 1 corresponding to c = 0. 

The invariant distribution of the circle map, Eq. (2), can be calculated 
in a similar manner. In this case 

M(n, m) = dx e i2~[x(m n) n(asin2.x+O)3 = e-i2~nOym n(27zna) (19) 

where Jn(z) is the ordinary Bessel function of the first kind of order n. The 
Fourier coefficients of the invariant measure are then determined by 
Eq. (10) 

A(n) = ~ e-i2znOJ m - n(2rcna) A(m) 
m 

=e i2~"~J_,(27rna)A(O)+ ~ e-iZ~n~ m n(2rcna)A(m) (20) 
rn~-O 

As above, A(0)= 1, and a series representation of each coefficient can be 
obtained by iterating the sum in the second term. (=) For example, when 
f 2 = 0  

A(n) = J_,(2zcna) + ~ Jm_n(2zcna) J m(2~zma) 
m7;-O 

+ ~ ~ Jm n(27zna)Jq m(Zrcma)J_q(2rcqa)+ ... (21) 
rn~aO qvaO 

For a>> 1, the Bessel functions may be replaced by their asymptotic 
forms.(34) 

Jm n(2rcna) ~ - ~ 1  cos (27tna (m-n)Tr 
2 

Then, to leading order in 1/x/a 

A(n),~J n(2~zna) e-i2=nK2 

and the invariant distribution reduces to 

) (22) 

(23) 

PI(X) = 1 + 2 ~ c o s [ 2 r m ( x -  s JSn(27rna) 
n > O  

(24) 

A plot of PI(X) o v e r  the interval [0, 1] is shown by the dashed curve 
in Fig. 7 for a = 10.6. While gross structure is revealed with fewer than 10 
terms, the infinite sum has been truncated to 50 terms, the minimum num- 
ber required to produce most discernable structure. A smaller number of 
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Fig. 7. The invariant probability distribution is shown for the circle map for s = 0 and a 
large nonlinearity, a =  10.6. The solid curve was determined by iterating the map  100,000 
times and constructing a histogram by dividing the unit interval into 100 bins. The analytic 
approximation based on Eq. (24) with 50 terms is superimposed as a dotted line. 

terms is required for larger values of a. In the same figure, the validity of 
the approximation is confirmed through comparison with the numerically 
determined probability distribution (solid curve) which was computed by 
iterating the map 100,000 times and constructing a histogram of the num- 
ber of occurrences of different values of x. 

For small values of a, Eq. (24) no longer provides a good 
approximation to the invariant measure; and the coefficients A(n) must be 
obtained directly from a truncated form of Eq. (12) where the Bessel 
functions are evaluated exactly. For most values of a studied, a 101 x 101 
matrix system is sufficient to reproduce the structure of the calculated 
invariant distribution. (In actual calculations the size of the system can be 
further reduced using the symmetries of the Fourier coefficients and the fact 
that A(0)= 1.) 

Good correspondence between numerical and analytical results is 
obtained through a range of small a values. For example, Fig. 8 shows a 
comparison of the histogram with the invariant measure determined from 
the solution of Eq. (12) for a = 0.91. Despite its complexity, the structure of 
the histogram plot is closely reproduced by the calculated Pt(x). 
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Fig. 8. The invariant probability distribution is shown for the circle map for ~2 = 0 and a 
small nonlinearity, a=0.91. The solid curve corresponds to a histogram constructed by 
iterating the map 100,000 times. The path integral result using Eq. (12) truncated to 101 terms 
is superimposed as a dotted line. 

The solution of the matrix equation can also be used to calculate the 
properties of the long-time behavior of the map before as well as after the 
onset of chaos. In Fig. 9, for example, the analytically determined dis- 
tribution for a = 0.45 and s = 0 is superimposed upon the numerical result 
for the same parameters. The sharp peaks of both distributions correspond 
to the regular period-2 cycle. In addition, Fig. 10 shows the invariant 
measure for a = 0.505. For  this value of a the bifurcation diagrams, Figs. 2a 
and 2b, show two distinct 2-cycles and the histogram, shown by the solid 
curve in Fig. 10, exhibits the two prominent extrema for one of the period-2 
attractors corresponding to x0=0.75.  Displaying the second attractor 
requires use of a starting value within its basin of attraction. However, the 
path integral result, indicated by the dashed curve, depends only on the 
unique solution of Eq. (12) and includes the peaks of both possible attrac- 
tors. 

The path integral method is equally effective for the calculation of the 
invariant measure for the circle map with nonzero (2. For example Fig. 11 
shows the approximate invariant measure corresponding to the appearance 
of a disjoint pair of periodic and chaotic attractors for the values of a and 
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Fig. 9. The invariant probability distribution for a period-2 orbit is shown for r = 0 and 
a = 0A5. The solid curve corresponds to a histogram constructed by iterating the map 100,000 
times. The path integral result using Eq. (12) truncated to 101 terms is superimposed as a dot- 
ted line. 
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Fig. 10. The invariant probability distribution is shown for the circle map for s = 0 and 
a = 0.505. The solid curve corresponding to the histogram, constructed by iterating the map 
100,000 times from a single initial condition, shows only one branch of the two bistable, 
period-2 attractors while the path integral result using Eq. (12) truncated tO, indicated by the 
dotted curve, captures both periodic attractors. 



386 Jensen and Jessup 

15 

10 

PI (x) 

5 

0 """~'":"~~"~"\ 

-~ 
0.0 

s~ 

H 
i + F' 

i !" 
~.,.f2 

,-d""\~ t, 1 'L\. j ,S '  
i ,," .... ~" " 

I , I I , I , 

0.2 0.4 0.6 0.8 1.0 
x 

Fig. 11. The invariant probability distribution is shown for the circle map for f~ = 0.45 and 
a =0.62. The solid line shows the histograms for the two disjoint attractors, one periodic on 
the left and one chaotic on the right, constructed by iterating the map 100,000 times for two 
different initial conditions. The path integral result using Eq. (12) truncated with 101 terms, 
which is indicated by the dotted line, provides a representation of both attractors. 

s used in Figs. 6a and 6b. As before, the truncated solution of Eq. (12) 
captures both attractors, whereas, the iteration of the map provides a 
histogram of one or the other depending on the initial condition. 

Finally, this method is also useful for calculating statistical properties 
other than the probability distribution. For example, in a chaotic system, 
an infinitesimal error in the initial position of a trajectory leads to great 
uncertainty in the position at any later time. Neighboring orbits split apart 
at an exponential rate. The average Lyapunov exponent 2 provides a 
measure of this divergence) 27) The average Lyapunov exponent is easily 
determined using the calculated probability distribution. For the circle map 
with f2 = 0 and a > 1 

2= f~ dx P(x) ln 

= dx 1 + 2 ~ cos(2~znx) J,(2~na) 
;,1 

ln(~a) + O(ln a/x/-a ) 

In-~ 
(25) 
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Fig. 12. A comparison of the theoretical estimate for the average Lyapunov exponent, 
Eq. (25), with the numerically calculated values over a broad range of nonlinearities. The 
theoretical estimate is shown by the dotted curve while the numerical result is given by the 
solid curve. Except for the periodic orbits at a < 1 and at integer and half-integer values of a, 
which are indicated by the negative spikes in the solid curve, the agreement is excellent. 

This approximate result is identical to that obtained by Chirikov for the 
two-dimensional extension of the circle map known as the standard 
map. (35) Although the leading term in this expansion is equivalent to a ran- 
dom phase average, the path integral result also provides a systematic 
expansion of the corrections to the random phase approximation. 

As shown in Fig. 12, Eq. (25) gives a close representation of the 
numerically determined Lyapunov exponent plotted against the parameter 
a for a wide range of a values. Large deviations occur only near the known 
positions of fixed points of the map. The virtue of this result is that the 
Lyapunov exponent can be estimated without the use of a computer. 
Similar analytic formulas can also be derived for other statistical quantities 
dependent on the probability distribution or its Fourier coefficients. 

IV. CONCLUSION 

Although the circle map has received a tremendous amount of atten- 
tion in a wide variety of applications, very little has been written about the 
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behavior of the map in the strongly nonlinear regime, a > 1/2g, which 
exhibits a complicated mixture of periodic orbits, chaos, and bistability. In 
an attempt to mitigate this deficiency, we have provided a discussion of 
some of the possible behaviors of the strongly nonlinear circle map 
including split bifurcations, the emergence of periodic orbits at integer and 
half-integer values of a, and the possibility of two disjoint attractors which 
can be either regular or chaotic. In addition, we have applied a path 
integral method to calculate various statistical properties of the dynamics 
of the circle map in this regime. 

The path integral method is particularly useful for calculating the 
invariant probability distribution which describes the long-time behavior of 
the map. For large values of a the invariant measure is determined by a 
series expansion in terms of ordinary Bessel functions. For smaller values of 
a ~< 1 the series expansion converged too slowly, and it was necessary to 
solve a truncated system of linear equations for the Fourier coefficients of 
the invariant measure. In both cases the results showed good agreement 
with the histograms constructed by iterating the map for 105 time steps and 
could be evaluated in a fraction of the computer time required for the 
explicit simulation. Moreover, once the invariant measure is known, then 
other long-time statistical quantities are easily evaluated. These include the 
average Lyapunov exponent, which was found to be in excellent agreement 
with the numerical results. 

The success of the path-integral method for the description of the 
chaotic dynamics can be attributed to the fact that properties of strongly 
nonlinear systems are calculated by performing a steepest descent integral 
where the strength of the nonlinearity plays the role of the asymptotic 
parameter. Moreover, the representation of the probability distribution in 
terms of its Fourier components simplifies calculations for chaotic systems 
since the chaotic invariant measure tends to be relatively smooth in real 
space, thereby requiring fewer Fourier components for its accurate 
representation. The probability distribution for periodic orbits, on the 
other hand, is highly localized to a sequence of Dirac 6 functions which are 
not well represented by a finite number of Fourier components. 
Nevertheless, the probability distributions calculated with 101 Fourier 
components were found to provide an excellent approximation to the 
singular invariant measures associated with periodic orbits such as the 
period-2 cycle at a = 0.45. 

Finally, we emphasize that the path integral method described here 
can be used to calculate the invariant measures for many different maps in 
one or more dimensions as long as the dynamics are restricted to a boun- 
ded region of phase space. Moreover, a more general form of the path 
integral method can also be used to calculate conditional and time-depen- 
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dent probability distributions which determine the time evolution of obser- 
vable, statistical properties of the nonlinear dynamical systems such as 
correlation functions and diffusion coefficients. (16-t9) 
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